SOME ASPECTS OF THE CHEMISTRY OF CHLOROFLUORO-OLEFINS WHICH CONTAIN ALLYLIC CHLORINE ATOMS

Y. Amimoto, R.N. Haszeldine, M. Maruta, W.D. Morton & R. Rowland The University of Manchester Institute of Science and Technology, Manchester, England

Routes to perfluoroallyl chloride, $CF_2:CF.CF_2Cl$, and to <u>cis</u>- and <u>trans</u>-1-chloro-hexafluoro-2-trifluoromethyl(but-2-ene), $(CF_2Cl)(CF_3)C:CF.CF_3$ are reported, and their susceptibility to attack by nucleophiles discussed; the allylic chlorine atoms in these olefins are the controlling factor in determining the products obtained.

The conversion of 3-chloropentafluoropropene into a series of perfluoroallyl derivatives of general formula $R.CF_2.CF:CF_2$ [$R = (CF_3)_3C$ -, CF_3O -, C_6F_5 -, I-, MeO-, etc.] is described, and the further chemistry of 3-chloro pentafluoropropene and its derivatives outlined.

Water reacts rapidly with $(CF_2CI)(CF_3)C:CF.CF_3$ to give $CF_2:C(CF_3).CFCI.CF_3$ or $CF_3.CO.CH_2.CF_3$. Methanol affords $CF_2:C(CF_3).CFOMe.CF_3$ and $(MeOCF_2)(CF_3)C:CF.CF_3$ as initial products, with subsequent secondary products such as $CF_3.CFOMe.CH(CF_3).CF_2OMe$, $(CF_3)(MeO)C:C(CF_3).CF_2OMe$, $MeO.CF:C(CF_3).CFOMe.CF_3$, $(CF_3)(MeO)CF.CH(CF_3).CO_2Me$, and $(CF_3)(MeO)C:C(CF_3).CO_2Me$. The influence of allylic chlorine and of reaction time on the formation of these products, and mechanistic pathways for their formation are considered.